
1.6 Linear dependence and linear independence.

0. Assumed background.

• 1.5 Linear combinations.
• 2.1 Systems of linear equations.

Abstract. We introduce:—
• the notion of linear dependence and that of linear independence, and how they are related at the logical level,
• how the notion of linear dependence and that of linear independence are re-formulated in terms of homogeneous

systems of linear equations,
• how the notion of linear dependence and that of linear independence are re-formulated in terms of linear

combinations.
1. Definition. (Linear dependence and linear independence for column/row vectors over real (or com-

plex) numbers.)
Let u1,u2, · · · ,uq be column/row vectors with p real (or complex) entries. (These q vectors are not assumed to be
pairwise distinct.)

(a) We say that u1,u2, · · · ,uq are linearly dependent over the real (or complex) numbers if and only if
the statement (LD) holds:

(LD) There exist some real (or complex) numbers α1, α2, · · · , αq such that α1u1 + α2u2 + · · ·+ αquq = 0p and
α1, α2, · · · , αq are not all zero.

The equality α1u1 + α2u2 + · · · + αquq = 0p in which α1, α2, · · · , αq are not all zero is called a non-trivial
linear relation of u1,u2, · · · ,uq.

(b) We say that u1,u2, · · · ,uq are linearly independent over the real (or complex) numbers if and only if
the statement (LI) holds:

(LI) For any real (or complex) numbers α1, α2, · · · , αq, if α1u1 +α2u2 + · · ·+αquq = 0p then α1 = α2 = · · · =
αq = 0.

Remarks on terminologies.
Suppose u1,u2, · · · ,uq are the j1-th, j2-th, ..., jq-th columns/rows in a matrix, say, A, with real (or complex)
entries.
Then we say the j1-th, j2-th, ..., jq-th columns/rows of A are linearly dependent//independent over the real (or
complex) numbers if and only if u1,u2, · · · ,uq are linearly dependent//independent over the real (or complex)
numbers.
Furthermore, if A is a (p× q)-matrix and u1,u2, · · · ,uq are exactly the q columns/rows of A, then we will say that
the columns/rows of A are linearly dependent//independent over the real (or complex) numbers.

2. Comments on the definitions.
The comments on the definitions concerned with linear combinations of column/row vectors also apply here:—

(1) For simplicity of presentation, we will focus on linear dependence/independence for column/row vectors with
real entries over real numbers.
Analogous definitions, results, and arguments for those results for linear dependence/independence for col-
umn/row vectors with complex entries over complex numbers can be obtained immediately by consistently
thinking in terms of complex numbers instead of real numbers.

(2) For further simplicity of presentation, we will state (and prove) results concerned with column vectors only, as
most of the time in this course we need column vectors rather than row vectors
The corresponding results concerned with row vectors can be obtained by ‘taking transpose’ consistently.

(3) Every result concerned with linear dependence/independence of column vectors can be re-formulated in terms
of matrix-vector products.

3. Example (1). (Linear dependence and linear independence.)

(a) Let u1 =


1
0
0
0
1

 ,u2 =


1
1
0
0
2

 ,u3 =


1
1
1
0
3

 ,u4 =


1
1
1
1
4

.

We verify that u1,u2,u3,u4 are linearly independent over the real numbers.
According to definition, this amounts to verifying the statement below:—
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‘For real numbers α1, α2, α3, α4, if α1u1 + α2u2 + α3u3 + α4u4 = 05, then α1 = α2 = α3 = α4 = 0.’
Pick any real numbers α1, α2, α3, α4. Suppose α1u1 + α2u2 + α3u3 + α4u4 = 05.
Then

α1 + α2 + α3 + α4
α2 + α3 + α4

α3 + α4
α4

α1 + 2α2 + 3α3 + 4α4

 = α1


1
0
0
0
1

+ α2


1
1
0
0
2

+ α3


1
1
1
0
3

+ α4


1
1
1
1
4

 = α1u1 + α2u2 + α3u3 + α4u4 = 05.

By the definition of matrix equality, we obtain
α1 + α2 + α3 + α4 = 0

α2 + α3 + α4 = 0
α3 + α4 = 0

α4 = 0
α1 + 2α2 + 3α3 + 4α4 = 0

We have α4 = 0.
Since α3 + α4 = 0, we have α3 = 0.
Since α2 + α3 + α4 = 0, we have α2 = 0.
Since α1 + α2 + α3 + α4 = 0, we have α1 = 0.

(b) Let u1 =


1
−1
0
0
0

 ,u2 =


0
1
−1
0
0

 ,u3 =


0
0
1
−1
0

 ,u4 =


0
0
0
1
−1

 ,u5 =


−1
0
0
0
1

.

We verify that u1,u2,u3,u4,u5 are linearly dependent over the real numbers.
According to definition, this amounts to verifying the statement below:—

‘There exist some real numbers α1, α2, α3, α4, α5 such that α1u1 + α2u2 + α3u3 + α4u4 + α5u5 = 05 and
α1, α2, α3, α4, α5 are not all zero.’

We note (with a clever observation) that

1 · u1 + 1 · u2 + 1 · u3 + 1 · u4 + 1 · u5 =


1
−1
0
0
0

+


0
1
−1
0
0

+


0
0
1
−1
0

+


0
0
0
1
−1

+


−1
0
0
0
1

 = 05.

The numbers 1, 1, 1, 1, 1 are certainly not all zero.

4. Lemma (1). (Re-formulation of the notion of linear dependence in terms of homogeneous system of
linear equations.)
Suppose u1,u2, · · · ,uq are column vectors with p entries, and U is the (p×q)-matrix given by U = [ u1 u2 · · · uq ].

Then the statements (LD), (LD0) are logically equivalent:—

(LD) u1,u2, · · · ,uq are linearly dependent.
(Or equivalently: There exist some numbers α1, α2, · · · , αq such that α1u1 + α2u2 + · · · + αquq = 0p and
α1, α2, · · · , αq are not all zero.)

(LD0) The homogeneous system LS(U, 0p) has some non-trivial solution.

5. Lemma (2). (Re-formulation of the notion of linear independence in terms of homogeneous system
of linear equations.)
Suppose u1,u2, · · · ,uq are column vectors with p entries, and U is the (p×q)-matrix given by U = [ u1 u2 · · · uq ].

Then the statements (LI), (LI0) are logically equivalent:—

(LI) u1,u2, · · · ,uq are linearly independent.
(Or equivalently: For any numbers α1, α2, · · · , αq, if α1u1 + α2u2 + · · · + αquq = 0p then α1 = α2 = · · · =
αq = 0.)

(LI0) The homogeneous system LS(U, 0p) has no non-trivial solution.
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6. Linear dependence and linear independence being ‘opposite concept’ of each other.
An immediate logical consequence of Lemma (1), Lemma (2) combined is the result below, which informs us that
the notions of linear dependence and linear independence are ‘opposite’ to each other, in the sense that being linear
dependent is the same as being not linearly independent, while being linear independent is the same as being not
linearly dependent. This is consistent with the daily language use of the words ‘dependent’, ‘independent’.
Theorem (3).
Suppose u1,u2, · · · ,uq are column vectors with p entries.
Then u1,u2, · · · ,uq are linearly dependent if and only if u1,u2, · · · ,uq are not linearly independent.
(And equivalently: u1,u2, · · · ,uq are not linearly dependent if and only if u1,u2, · · · ,uq are linearly independent.)

7. The argument for Lemma (1), Lemma (2) relies on the result below, labelled Lemma (⋆), which describes a ‘dictio-
nary’ between linear combinations of column vectors and matrix-vector products:—
Lemma (⋆).
Let A be an (p× q)-matrix and t be a column vector with q entries.
Suppose that for each j = 1, 2, · · · , q, the j-th column of A is aj and the j-th entry of t is tj .

(So A = [ a1 a2 · · · aq ] and t =


t1
t2
...
tq

.)

Then At = t1a1 + t2a2 + · · ·+ tqaq.

8. Proof of Lemma (1).
Suppose u1,u2, · · · ,uq are column vectors with p entries, and U is the (p×q)-matrix given by U = [ u1 u2 · · · uq ].

(a) Suppose the statement (LD) holds: u1,u2, · · · ,uq are linearly dependent.
[Roughwork.
We want to verify the statement (LD0): ‘The homogeneous system LS(U, 0p) has some non-trivial solu-
tion.’
By definition, it suffices to name (after making an educated guess) some non-trivial solution for LS(U, 0p),
and to justify the claims involved.
Lemma (⋆) hints at what we may try.]

Then, by assumption, there exist some numbers α1, α2, · · · , αq such that α1u1 + α2u2 + · · ·+ αquq = 0p and
α1, α2, · · · , αq are not all zero.

Define t =


α1
α2
...
αq

. By definition, t ̸= 0q.

We have Ut = α1u1 + α2u2 + · · ·+ αquq = 0p.
Then t is a non-trivial solution of the homogeneous system LS(U, 0p).
It follows that the statement (LD0) holds.

(b) Suppose the statement (LD0) holds: The homogeneous system LS(U, 0p) has some non-trivial solution.

[Roughwork.
We want to verify the statement (LD): ‘u1,u2, · · · ,uq are linearly dependent.’
By definition, it suffices to name (after making an educated guess) some appropriate numbers α1, α2, · · · , αq

for which the equality α1u1 + α2u2 + · · ·+ αquq = 0p, and to justify the claims involved.
Lemma (⋆) hints at what we may try.]

By assumption, we may take some non-trivial solution solution t for LS(U, 0p). By definition, Ut = 0p and
t ̸= 0q.
Denote by αj the j-th entry of t for each j = 1, 2, · · · , q. Since t ̸= 0q, the numbers α1, α2, · · · , αq are not all
zero.
Also, α1u1 + α2u2 + · · ·+ αquq = Ut = 0p.
It follows that the statement (LD) holds.

9. Proof of Lemma (2).
Suppose u1,u2, · · · ,uq are column vectors with p entries, and U is the (p×q)-matrix given by U = [ u1 u2 · · · uq ].
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(a) Suppose the statement (LI) holds: u1,u2, · · · ,uq are linearly independent.

[Roughwork.
We want to deduce the statement (LI0): ‘The homogeneous system LS(U, 0p) has no non-trivial solution.’
Because the homogeneous system definitely has the trivial solution 0q, it suffices to show that every solution
of the system is the trivial solution.]

Suppose t is a solution of the homogeneous system LS(U, 0p). Then Ut = 0p.

[Further roughwork.
We ask whether t is ‘forced’ into being the trivial solution of LS(U, 0p).]

For each j, denote the j-th entry of t by αj .
We have α1u1 + α2u2 + · · ·+ αquq = Ut = 0p.
Then, by assumption, α1 = α2 = · · · = αp = 0.
Therefore t = 0q, and t is the trivial solution of the homogeneous system LS(U, 0p).
It follows that the statement (LI0) holds.

(b) Suppose the statement (LI0) holds: The homogeneous system LS(U, 0p) has no non-trivial solution.

[Roughwork.
We want to deduce the statement (LI): ‘For any numbers α1, α2, · · · , αq, if α1u1+α2u2+ · · ·+αquq = 0p

then α1 = α2 = · · · = αq = 0.’]
Pick any numbers α1, α2, · · · , αq. Suppose α1u1 + α2u2 + · · ·+ αquq = 0p.

[Further roughwork.
We ask whether α1, α2, · · · , αq are all zero.
Lemma (⋆) suggests we may translate this question into something in which the assumption can be applied.]

Define t =


α1
α2
...
αq

.

We have Ut = α1u1 + α2u2 + · · ·+ αquq = 0p.
Then by definition, t is a solution of the homogeneous system LS(U, 0p).
Since LS(U, 0p) has no nontrivial solution, t is the trivial solution of LS(U, 0p). Then t = 0q.
Therefore α1 = α2 = · · · = αq = 0.
It follows that the statement (LI) holds.

10. The notions of linear dependence and linear combinations are linked together in the result below:
Theorem (4). (Linear dependence re-formulated in terms of linear combinations.)
Suppose u1,u2, · · · ,uq be column vectors with p entries. Then the statements below are logically equivalent:—

(†1) u1,u2, · · · ,uq are linearly dependent.

(†2) At least one column vector amongst u1,u2, · · · ,uq is a linear combination of the others.

Remark. Theorem (4) suggests why it makes perfect sense for us to use the word ‘dependence’ in the phrase
‘linear dependence’. In plain words, this result says that a list of finitely many (column) vectors are linearly dependent
exactly when at least one of these vectors can be regarded to be ‘dependent’ of the others through being re-expressed
as a linear combination of the others.

11. Example (2). (Illustration of the idea in Theorem (4).)

Write u1 =


1
2
3
4
5

, u2 =


1
3
5
7
9

, u3 =


0
1
2
3
4

, u4 =


0
0
1
3
5

, u5 =


0
0
0
1
2

.

We have the equality
(♯) : 1 · u1 + (−1)u2 + 2u3 + (−2)u4 + 3u5 = 05.
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Coincidentally, the equalities below also hold:

(♮1) : u1 = 1 · u2 − 2u3 + 2u4 − 3u5

(♮2) : u2 = 1 · u1 + 2u3 + (−2)u4 + 3u5

(♮3) : u3 = −1

2
u1 +

1

2
u2 + 1 · u4 −

3

2
u5

(♮4) : u4 =
1

2
u1 −

1

2
u2 + 1 · u3 +

3

2
u5

(♮5) : u5 = −1

3
u1 +

1

3
u2 −

2

3
u3 +

2

3
u4

This is in fact not just a coincidence.
Theorem (4) informs us about the logical relations of the equalities (♯), (♮1), (♮2), (♮3), (♮4), (♮5):—

• Because the equality (♯) holds, we expect at least one of the equalities of the form of (♮1), (♮2), (♮3), (♮4), (♮5)
will hold.

• Because at least one of the equalities (♮1), (♮2), (♮3), (♮4), (♮5) holds, we expect an equality of the form of (♯) will
hold.

12. Proof of Theorem (4).
Suppose u1,u2, · · · ,uq be column vectors with p entries.

(a) Suppose the statement (†1) holds: u1,u2, · · · ,uq are linearly dependent.
Then there exist some numbers α1, α2, · · · , αq such that α1u1 +α2u2 + · · ·+αquq = 0p and α1, α2, · · · , αq are
not all zero.
By assumption, at least one of α1, α2, · · · , αq is non-zero.
Then we may assume, without loss of generality, that α1 ̸= 0.

Now by assumption, u1 = (−α2

α1
)u2 + (−α3

α1
)u3 + · · ·+ (−αq

α1
)uq.

Hence u1 is a linear combination of u2,u3, · · · ,uq.
It follows that the statement (†2) holds.

(b) Suppose the statement (†2) holds: at least one vector amongst u1,u2, · · · ,uq is a linear combination of the
others.
Then we may assume, without loss of generality, that u1 is a linear combination of u2,u3, · · · ,uq.
Then there exist some numbers β2, β3, · · · , βq such that u1 = β2u2 + β3u3 + · · ·+ βquq.
Therefore 1 · u1 + (−β2)u2 + (−β3)u3 + · · ·+ (−βq)uq = 0p.
This is a non-trivial linear relation of u1,u2, · · · ,uq.
Hence u1,u2, · · · ,uq are linearly dependent.
It follows that the statement (†1) holds.

13. With a purely logical consideration (known as contra-positivity), we obtain the re-formulation of Theorem (4) below.
Theorem (5). (Corollary (1) to Theorem (4).)
Suppose u1,u2, · · · ,uq are column vectors with p entries. Then the statements below are logically equivalent:—

(∼†1) u1,u2, · · · ,uq are linearly independent.
(∼†2) None of the column vector amongst u1,u2, · · · ,uq is a linear combination of the others.

Remark. The notion of linear independence can be understood through this re-formulation of Theorem (5): it
corresponds to our heuristic understanding of the word independence in daily language.

14. Another consequence of Theorem (4) is the result below.
Theorem (6). (Corollary (2) to Theorem (4).)
Let u1,u2, · · · ,uq,v be column vectors with p entries.
Suppose u1,u2, · · · ,uq are linearly independent.
Then the statements below are logically equivalent:—

(††1) u1,u2, · · · ,uq,v are linearly dependent.
(††2) v is a linear combination of u1,u2, · · · ,uq.
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15. Proof of Theorem (6).
Let u1,u2, · · · ,uq,v be column vectors with p entries.
Suppose u1,u2, · · · ,uq are linearly independent.

(a) Suppose the statement (††1) holds: u1,u2, · · · ,uq,v are linearly dependent.
Then there exist some numbers α1, α2, · · · , αq, β such that α1u1+α2u2+· · ·+αquq+βv = 0p and α1, α2, · · · , αq, β

are not all zero.
We verify that β ̸= 0, with the help of the method of proof-by-contradiction:

• Suppose it were true that β = 0.
Then α1u1 + α2u2 + · · ·+ αquq = 0 and α1, α2, · · · , αq were not all zero.
Therefore u1,u2, · · · ,uq would be linearly dependent.
Contradiction arises.

As β ̸= 0, we have v = (−α1

β
)u1 + (−α2

β
)u2 + · · ·+ (−αq

β
)uq.

Therefore v is a linear combination of u1,u2, · · · ,uq.
It follows that the statement (††2) holds.

(b) Suppose the statement (††2) holds: v is a linear combination of u1,u2, · · · ,uq.
Then there exist some numbers γ1, γ2, · · · , γq such that v = γ1u1 + γ2u2 + · · ·+ γquq.
Therefore γ1u1 + γ2u2 + · · ·+ γquq − 1 · v = 0p.
Hence u1,u2, · · · ,uq,v are linearly dependent.
It follows that the statement (††1) holds.

16. With a purely logical consideration (known as contra-positivity), we obtain the re-formulation of Theorem (6) below.
Theorem (7). (Corollary (3) to Theorem (4).)
Let u1,u2, · · · ,uq,v be column vectors with p entries.
Suppose u1,u2, · · · ,uq are linearly independent.
Then the statements below are logically equivalent:—

(∼††1) u1,u2, · · · ,uq,v are linearly independent.

(∼††2) v is not a linear combination of u1,u2, · · · ,uq.
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